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ABSTRACT

Coalition formation is a key topic in multi–agent systems
(mas). Coalitions enable agents to achieve goals that they
may not have been able to achieve independently, and en-
courages resource sharing among agents with different goals.

A range of previous studies have found that problems
in coalitional games tend to be computationally complex.
However, such hardness results consider the entire input as
one, ignoring any structural information on the instances.
In the case of coalition formation problems, this bundles to-
gether several distinct elements of the input, e.g. the agent
set, the goal set, the resources, etc. In this paper we re-
examine the complexity of coalition formation problems in
the coalition resources game model, as a function of their
distinct input elements, using the theory of parameterized
complexity. The analysis shows that not all parts of the in-
put are created equal, and that many instances of the prob-
lem are actually tractable. We show that the problems are
FPT in the number of goals, implying that if the number
of goals is bounded then an efficient algorithm is available.
Similarly, the problems are FPT in the combination of the
number of agents and resources, again implying that if these
parameters are bounded, then an efficient algorithm is avail-
able. On the other hand, the problems are para-NP hard in
the number of resources, implying that even if we bound the
number of resources the problems (probably) remain hard.
Additionally, we show that most problems are W[1]-hard in
the size of the coalition of interest, indicating that there is
(probably) no algorithm polynomial in all but the coalition
size. The exact definitions of the parameterized complexity
notions FPT , Para-NP and W[1] are provided herein.
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1. INTRODUCTION
In multi–agent systems (mas), where each agent has lim-

ited resources, the formation of coalitions of agents is a very
powerful tool [1, 14, 15]. Coalitions enable agents to ac-
complish goals they may not have been able to accomplish
independently. As such, understanding and predicting the
dynamics of coalitions formation, e.g. which coalitions are
more beneficial and/or more likely to emerge, is a question
of considerable interest in multi-agent settings. Unfortu-
nately, a range of previous studies have shown that many of
these problems are computationally complex ([12, 16, 17]).
Nonetheless, as noted by Garey and Johnson [8], hardness
results, such as NP–completeness, should merely constitute
the beginning of the research. NP-hardness indicates that a
general solution for all instances of the problem most prob-
ably does not exist. Still, efficient solutions for important
sub-classes may well exist.
NP-hardness results consider the entire input as one, ig-

noring any structural information on the problem. In the
case of coalition formation problems, this bundles together
several distinct elements of the input, e.g. the agent set,
the goal set, the resources, etc. The NP-hardness of coali-
tion formation tells us that the complexity of problem, as a
function of all its components combined is (probably) high.
However, it is important to understand what is the source of
this complexity; do all input parts contribute equally? What
if we bound one of them, say the goal set, can the problem
then be solved efficiently in terms of the other elements?
Such questions are of considerable practical importance, as
in many real-world applications some parts of the input may
be known to be small. For example, we are witnessing the
advent of small transaction commerce on the Internet for
purchasing goods, information, and communication band-
width [9]. In such domains there are many different agents
but the number of different goals is limited. Therefore, a
coalition formation algorithm that is very efficient in terms
of the number of agents, yet not efficient in the number of
goals, may not only be acceptable, but also preferable in
practical terms.

The formal model for coalition formation we use in this
work is the Coalition Resource Game (crg) framework intro-
duced in [17]. In this framework each agent has a set of goals
and a fixed endowment of resources. For each goal, there is
a specific profile of resources (i.e. types and amounts) re-
quired to fulfil this goal. Agents can form coalitions, whereby
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they combine their endowed resources to fulfil their respec-
tive goals. A coalition is successful if its combined resources
are sufficient to fulfil its members’ respective goals. With
this formulation, given a specific instances of the problem,
many questions can be posed: is a particular coalition suc-
cessful? is it maximally so? and more. As stated earlier,
most these problems were found to be NP-hard.

In this paper we re-examine the complexity of these prob-
lem as a function of their distinct input elements: the num-
ber of agents (Ag), the number of goals (G), the number of
resources (R), and the size of the specific coalition of interest
(|C|). We do so using the theory of parameterized complexity
[4, 7]. Parameterized complexity provides us with the nec-
essary tools to investigate the relative contributions of the
different input elements to the complexity of the problem.
(A brief introduction to the basic concepts of parameter-
ized complexity is provided in Section 2.2.) We show that
the problems are FPT in the number of goals, |G|, roughly
meaning that if |G| is bounded, then an efficient algorithm is
available, as a function of the rest of the input (the number
of agents and resources). Similarly, the problems are FPT
in |Ag| + |R|, again roughly meaning that if this parame-
ter is bounded, then an efficient algorithm is available (as a
function of the number of goals). On the other hand, the
problems are para-NP hard in |R|, roughly meaning that if
we bound the number of resources alone, then the problem
remains hard. Additionally, in most cases, the problems are
W[1]-hard in the size of the coalition of interest, roughly
meaning the that if we consider a small specific coalition C,
then still no efficient algorithm is available, even if we al-
low inefficiencies in |C|. The exact definitions of the notions
FPT , Para-NP and W[1] are provided in Section 2.2.

The rest of this paper is organized as follows. In the next
section we review the formal model of the Coalition Resource
Game (crg) framework, and the theoretical fundamentals
of the parameterized complexity paradigm. In Section 3 we
provide the parameterized analysis of several key coalition
formation problems, and prove our main results – both pos-
itive and negative. Finally, Section 4 provides a discussion
of these results followed by open problems and future direc-
tions.

2. PROBLEM DEFINITION

2.1 The CRG Model for Multi–Agent Systems
The framework we use to model coalitions is the crg

model introduced in [17], defined as follows. The model con-
tains a non–empty, finite set Ag = {a1, . . . , an} of agents. A
coalition, typically denoted by C, is simply a set of agents,
i.e. a subset of Ag. The grand coalition is the set of all
agents, Ag. There is also a finite set of goals. Each agent
i ∈ Ag is associated with a subset Gi of the goals. Agent
i is satisfied if at least one member of Gi is achieved, and
unsatisfied otherwise.

Achieving the goals requires the expenditure of resources,
drawn from the total set of resource types R. Achieving dif-
ferent goals may require different quantities of each resource
type. The quantity req(g, r) denotes the amount of resource
r required to achieve goal g. It is assumed that req(g, r) is
a natural number. Each agent is endowed certain amounts
of some or all of the resource types. The quantity en(i, r)
denotes the amount of resource r endowed to agent i. Again,
it is assumed that en(i, r) is a natural number.

Combining these components, we attain that a coalitional
resource game Γ is an (n + 5)–tuple:

Γ = 〈Ag, G, R, G1, . . . , Gn, en, req〉

where:

• Ag = {a1, . . . , an} is a set of agents;

• G = {g1, . . . , gm} is a set of possible goals;

• R = {r1, . . . , rt} is a set of resources;

• for each i ∈ Ag, Gi ⊆ G is a set of goals, such that any
of the goals in Gi would satisfy i – but i is indifferent
between the members of Gi;

• en : Ag × R → N is an endowment function; and

• req : G × R → N is a requirement function.

The endowment function en is extended to coalitions, by
summing up the endowment of its members:

en(C, r) =
X
i∈C

en(i, r)

Similarly, the requirements function req is extended to sets
of goals, by summing up the requirements of its members:

req(G′, r) =
X
g∈G′

req(g, r)

A set of goals G′ satisfies agent i if G′ ∩ Gi 	= ∅, and
satisfies coalition C if it satisfies every member of C. A
set of goals G′ is feasible for coalition C if that coalition is
endowed with sufficient resources to achieve all the goals in
G′, i.e. for all r ∈ R, req(G′, r) ≤ en(C, r). Finally, we say
that a coalition C is successful if there exists a set of goals
G′ that satisfies it and is feasible for it.

For the sake of convenience, for a set of goals G′, we denote
succ(G′) to be the set of agents that would be satisfied if all
goals in G′ where achieved:

succ(G′) = {i ∈ Ag : G ∩ Gi 	= ∅}.

The crg model is a very straightforward model, yet it can
model many real-world situations. For example, the virtual
organizations problem (see [2]). A virtual organization is a
temporary alliance of organizations that come together to
share skills and resources in order to better respond to busi-
ness opportunities. Each organization has its own resources
and needs to accomplish a certain target for its clients; the
target can be achieved in several ways (goals). The orga-
nizations share their resources in order to accomplish their
targets.

Another example is voting. Consider a voting domain
where decisions are made based on the choices made by the
voters, and where certain agents may affect how these vot-
ers vote. Each agent affects a certain subset of the voters
(resources), and a coalition of agents may affect all the vot-
ers that can be affected by the members of the coalition.
Different goals may require different number of voters.
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2.1.1 Coalition Formation Problems
We consider four specific problems regarding coalition for-

mations:

successful coalition (sc)
Instance: A crg Γ, and a coalition C.
Question: Is C successful?

This problem was introduced in [16] as the most funda-
mental question that could be asked on coalitions. It was
proven to be NP–complete in [17].

Existence of Successful Coalition of Size k (esck)
Instance: A crg Γ, and a number k.
Question: Does there exists a successful coalition of size

(exactly) k?

This problem was not considered in [17], but we believe
that it is a very interesting question in the crg model.
We found this problem to be NP–hard by reduction from
clique (Theorem 3.5).

Maximal Coalition (maxc)
Instance: A crg Γ, and a coalition C
Question: Is every (proper) superset of C not satisfiable?

This problem was found to be co–NP–complete in [17].
Note that maximal coalition does not require that C,

the coalition in question, be satisfiable. The following prob-
lem does:

Maximal Successful Coalition (maxsc)
Instance: A crg Γ, and a coalition C
Question: Is C maximally successful (i.e. C is successful

and every proper superset thereof not successful)?

This problem was found to be Dp–complete in [17].

2.2 Parameterized Complexity
We now provide a brief introduction to the key relevant

concepts from the theory of parameterized complexity. The
definitions in this section are taken from [7] and [3].

The core idea of parameterized complexity is to single out
a specific part of the input as the parameter and ask whether
the problem admits an algorithm that is efficient in all but
the parameter. In most cases the parameter is simply one of
the elements of the input (e.g. the size of the goal set), but
it can actually be any computable function of the input:

Definition 2.1. Let Σ be a finite alphabet.

1. A parametrization of Σ∗ is a mapping k : Σ∗ → N

that is polynomial time computable.

2. A parameterized problem (over Σ) is a pair (Q, k )
consisting of a set Q ⊆ Σ∗ of strings over Σ and a
parametrization k of Σ∗

As stated, given a parameterized problem we seek an al-
gorithm that is efficient in all but the parameter. This is
captured by the notion of fixed parameter tractability, as fol-
lows:

Definition 2.2. A parameterized problem (Q, k ) is fixed–
parameter tractable (FPT ) if there exist an algorithm A, a
constant α, and a computable function f , such that A de-
cides Q in time f(k (x))|x|α.

Thus, while the fixed-parameter notion allows inefficiency in
the parameter k (x), by mean of the function f , it requires
polynomial complexity in all the rest of the input. In par-
ticular, a problem that is FPT is tractable for any bounded
parameter value.

While the core aim of parameterized complexity is to iden-
tify problems that are fixed-parameter tractable, it has also
developed an extensive complexity theory, allowing to prove
hardness results, e.g. that certain problems are (most prob-
ably) not FPT . To this end, several parameterized com-
plexity classes have been defined. Two of these classes are
the class W[1] and the class para-NP. We will formally de-
fine these classes shortly, but the important point to know is
that there is strong evidence to believe that both classes are
not contained in FPT (much like NP is probably not con-
tained in P). Thus, W[1]-hard and para-NP-hard problems
are most probably not fixed-parameter tractable.

The class W[1] can be defined by its core complete prob-
lem, defined as follows.

Short Nondeterministic Turing Machine Computation
Instance: A single-tape, single-head nondeterministic

Turing machine M , a word x, and a positive integer k.
Question: Is there a computation of M on input x that

reaches the accepting state in at most k steps?
Parameter: k.

Note that this definition is analogous to that of NP, with
the addition of the parameter k.

Definition 2.3. The class W[1] contains all parameter-
ized problems FPT -reducible (defined hereunder) to Short-
Nondeterministic-Turing-Machine-Computation.

The class para-NP is defined as follows.

Definition 2.4. A parameterized problem (Q, k ) is in para-
NP if there exists a non-deterministic Turing machine M ,
constant α and an arbitrary computable function f , such that
for any input x, M decides if x ∈ Q in time ≤ |x|αf(k (x)).

Establishing hardness results most frequently requires re-
ductions. In parameterized complexity, we use FPT -reduction,
defined as follows:

Definition 2.5. Let (Q, k ) and (Q′, k ′) be parameterized
problems over the alphabets Σ and Σ′, respectively. An FPT –
reduction (FPT many–one reduction) from (Q, k ) to (Q′, k ′)
is a mapping R : Σ∗ → (Σ′)∗ such that:

1. For all x ∈ Σ∗ we have (x ∈ Q ⇔ R(x) ∈ Q′).

2. R is computable in time f(k (x))|x|α for some constant
α and an arbitrary function f .

3. There is a computable function g : N → N such that
k ′(R(x)) ≤ g(k (x)) for all x ∈ Σ∗.

Point (1) simply states that R is indeed a reduction. Point
(2) says that it can be computed in the right amount of time
- efficient in all but the parameter. Point (3) states that
the parameter of the image is bounded by (a function of)
that of the source. This is necessary in order to guarantee
that FPT reductions preserve FPT -ness. I.e. with this
definition we obtain that if (Q, k ) reduces to (Q′, k ′) and
(Q′, k ′) ∈ FPT then (Q, k ) is also ∈ FPT .

For detailed studies and explanations on the theory of
Parameterized Complexity we refer the readers to [3, 6, 7].
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SC ESCK MAXC MAXSC
|G| FPT FPT FPT FPT
|C| W[1]-hard W[1]-hard W[1]-hard
|R| Para-NP-hard Para-NP-hard Para-NP-hard
|Ag|+|R| FPT FPT FPT

Table 1: Main results regarding the CRG model, for the Successful Coalition (SC), Existence of Success-
ful Coalition of Size k (ESCK), Maximal Coalition (MAXC) and Maximal Successful Coalition (MAXCS)
problems.

3. PARAMETERIZED COMPLEXITY ANAL-

YSIS OF COALITION PROBLEMS
In this section, we consider the crg problems presented

in Section 2.1.1), and present the analysis of their complex-
ity when parameterizing by the different input components.
We consider four different parameterizations: |G| - the total
number of distinct goals, |R| the number of distinct resource
types, |C| - the size of the specific coalition in question, and
|Ag|+ |R| - the sum of the number of resources and agents.
This is due to the fact that domains where one of these pa-
rameters is bounded are common and can be found in many
every day scenarios. Therefore, exposing algorithms that
work in pseudo polynomial time given that one of these pa-
rameters is bounded, is of interest from the practical point
of view. The results are summarized in Table 1.

3.1 The |G| Parameter
We first consider the complexity of the problem when pa-

rameterizing by |G| - the number of distinct goals. De-
termining the complexity of a problem, given that |G| is
bounded is very important due to the fact that there are
many domains with a large environment but with a small
number of goals. For example, the Carpool schemes [10] of
a large organization can be viewed as a coalition game with
a large number of agents (employees) and resources, but a
small number of goals (days and hours). Other interest-
ing and well studied examples of cases with a bounded |G|
parameter include some biding settings, most negotiation
problems and some sensor network problems.

Our analysis shows that all of the problems we consider
are FPT when parameterizing by |G|. Intuitively, when
the number of goals is bounded coalitions can be formed
around the subset of goals, instead of vise versa. Determin-
ing whether a certain goal set is both feasible and satisfying
can be done in polynomial time. Therefore, when the num-
ber of goals is bounded the number of calculations needed
to investigate the environment reduces dramatically.

The formal proofs, regarding the |G| parameter, for all the
coalition formation problems are established as follows.

Theorem 3.1. Checking whether a coalition C is a Suc-
cessful Coalition is FPT when parameterizing by |G| or by
|C| + |R|.

Proof. We will prove this by constructing an integer
linear programming representation of the problem with
|G| variables and |C| + |R| constraints. The problem we
define shall be a satisfiability problem (rather than an op-
timization problem). That is, it consists of only of a set
of constraints, and the question is whether there exists an
integer solution to this set.

The variables of the programs shall be xg, for each g ∈ G,

where xg = 1 represent the situation that goal g is achieved,
and xg = 0 the situation that the goal is not achieved. The
integer programming is the following:

∀i ∈ C
P

g∈Gi
xg � 1 (1)

∀r ∈ R
P

g∈G xgreq(g, r) � en(C, r) (2)

∀g ∈ G xg ∈ {0, 1} (3)

The first set of constraints (Equation 1) ensures that each
agent has at least one of its goals achieved. While the second
set of constraints (Equation 2) ensures that the coalition has
enough endowment to achieve all the goals.

It is apparent that any solution for this integer pro-
gramming problem is a set of goals for which coalition C
has enough endowment, and which will satisfy coalition C.

integer programming is FPT in the number of vari-
ables (|G|) and in the number of constraints (|C|+ |R|) ([7],
page 222).

Theorem 3.2. Checking whether there is a Successful Coali-
tion of size k is FPT when parameterizing by |G|.

Proof. The algorithm of Figure 1 solves the problem and
runs in O(|Γ| · 2|G|) time, which is FPT in |G|.

1. For each G′ ⊆ G:

(a) Set C′ = succ(G′) (the set of agents satisfied by
G′)

(b) If |C′| 	= k go to 1.

(c) If G′ is feasible for C′ return ”True”.

2. return ”False”.

Figure 1: Algorithm for determining whether there
is a successful coalition of size k in the given CRG.

The algorithm’s main loop is of complexity O(2|G|). Inside
the loop, the algorithm creates a subset of agents that are
satisfied by G′ with a complexity of O(|Ag|) and compares
the subset size in a complexity of O(1). In the last step the
algorithm checks if the given subset of goals (G′) is feasible
for C′. This verified in O(|Γ|) steps. Hence, the algorithm’s

complexity is O(2|G| · |Γ|).

Theorem 3.3. Checking whether C is a Maximal Coali-
tion is FPT when parameterizing by |G|.

Proof. The algorithm of Figure 2 solves the problem and
runs in O(|Γ| · 2|G|) steps.

The algorithm’s main loop is of a complexity of O(2|G|).
Inside the loop, the algorithm creates a subset of agents that
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1. For each G′ ⊆ G:

(a) Set C′ = succ(G′)

(b) If G′ not feasible for C′ go to 1.

(c) If C ⊂ C′ return ”False”.

2. return True.

Figure 2: Algorithm for determining whether the
coalition is maximal.

are satisfied by G′ in a complexity of O(|Ag|) and ensures
that subset C′ has enough endowment to accomplish G′ (a
complexity of O(|Γ|)). The third step in the loop is to ensure
that C′ is not a superset of C, again with complexity ≤
O(|Γ|). Hence, the algorithm’s complexity is O(2|G|·|Γ|).

Theorem 3.4. Checking whether C is a Maximal Suc-
cessful Coalition is FPT when parameterizing by |G|.

Proof. The algorithm of Figure 3 solves the problem and
runs in O(|Γ| · 2|G|) steps.

1. If C is not a Successful Coalition return ”False”.

2. Else if C is not a Maximal Coalition return ”False”.

3. return ”True”.

Figure 3: Algorithm for discovering whether the
coalition is successful and maximal.

The algorithm’s first step can be done in O(Γ·2|G|) (Theo-
rem 3.1). The algorithm’s second step can also be completed

in O(Γ · 2|G|) time (Theorem 3.3). Hence, the algorithm’s

complexity is O(2|G| · |Γ|).

3.2 The |C| Parameter
The |C| parameter is perhaps the most interesting param-

eter. There are many applications and domains with large
environments but either we can bound the size of the coali-
tion, or it is already known that the size of the coalition is
going to be small, e.g. teamwork frameworks. For example
the multi–agent vehicle routing problem that was described
by Sandholm and Lesser [11], contains a bounded and rel-
atively small number of agents in each coalition, while the
number of goals and different resources seems to be large.

Some previous works (e.g. [13]) have shown cases where
bounding the size of the coalition reduces their problems’
complexity. Hence, we initially expected a similar behavior
here. Interestingly, as the following proofs demonstrate, this
is probably not the case. We prove that when parameteriz-
ing by |C| the problems are W [1]-hard, which, as explained
in Section 2.2, is a strong indication that they are most prob-
ably not FPT . Thus, the |C| parameter does not seem to
be the source of the problems’ hardness. Some intuition to
why this is the case can be gained by observing that even if
the size of the coalition is bounded, we still remain with the
hard knapsack–like problem of choosing the appropriate
goals and dividing the resources among them.

The formal claims and proofs follow.

Theorem 3.5. Checking whether there is a Successful Coali-
tion of size k is W[1]–hard when parameterized by k.

Proof. We prove this by reduction from clique (param-
eterized by the size of the clique) a known W[1]–complete
problem [5].

Let G = (V, E) a graph with V = {v1, ..., vn} and k an
integer. We construct a set of agents Ag = {a1, ..., an} such
that each agent represents a single vertex, and a set of re-
sources R = {r1, ..., an}.

For each agent ai, we set Gi = gi. Each goal gi demands
resources, such that:

req(gi, rj) =

(
0, if i 	= j;

k − 1, otherwise.

For each edge (vi, vj) ∈ E: en(vi, rj) = 1 and en(vj , ri) = 1
The construction of the crg Γ can be completed in

O(|V |2 · |E|) steps.
The parameter of the new problem (the size of the coali-

tion) is identical to the parameter of the Clique’s problem.
We now prove that there is a successful coalition of size k

in the crg ΓG iff there is a clique of size k in the graph G:
(⇒) Assume that there is a coalition of size k in the crg
ΓG. Namely, each agent ai, belonging to the coalition, has
exactly k − 1 agents in the coalition, that has its kind of re-
source (ri). An agent can have a resource of another agent
only if the corresponding vertexes are neighbors. Therefore,
the coalition can be successful only if the corresponding ver-
tex for each agent in the coalition is a neighbor of all the
corresponding vertexes of all other agents in the coalition.
Thus there must be k vertexes that are all neighbors of each
other.
(⇐) Let us assume that there is a clique of size k in graph G.
The clique Clique = {vl1, ..., vlk} is composed of k vertexes.
Choosing the corresponding agents ali in the crg will pro-
vide a coalition, of size k, where each agent ai has exactly
enough resources (k − 1 of resource ri) to complete its goal
gi.

Notice that this reduction is both a classical many–one
reduction, and a FPT –reduction. Therefore, since clique
is a known W[1]–complete problem [5], this reduction can be
use to prove that this problem is not only NP–hard problem,
but also W[1]–hard problem.

Theorem 3.6. Checking whether C is a Maximal Coali-
tion (maxc) is W[1]–hard when parameterizing by |C|.

Proof. We prove this by reduction from existence of
successful coalition of size k (esck) (we already proved
that this problem is W[1]–hard in Theorem 3.5).

Let Γ be a crg and k be a number. We construct Γ′ such
that:

Ag′ = Ag ∪ {az} , G′ = G ∪ {gz} , R′ = R ∪ {rz}

az, rz and gz are a new agent, a new resource and a new
goal (respectively) that did not exist in Γ, such that:

req(gz, ri) =

(
0, if i 	= z;

k, otherwise.

∀ri ∈ R en(az, ri) = 0

∀ai ∈ Ag, i 	= z en(ai, rz) = 1

Gz = {gz} , C = {az}

The construction of the crg Γ′ can be completed in O(|Γ|)
time.
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The parameter of the maximal coalition problem (k′ =
|C|) is a function of the parameter of the esck problem, and
depends only on it (k′ = 1).

We now prove that there is a successful coalition of size k
in the crg Γ iff C is not a maximal coalition in the crg Γ′:
(⇒) Let us assume that there is a successful coalition C′

of size k in crg Γ. Thus the coalition C′′ = C′ ∪ C is a
successful coalition in crg Γ′, since C′ is successful and the
k agents will enable the coalition to accomplish gz for az.
In addition, C′′ ⊃ C, which means that C is not a maximal
coalition.
(⇐) Let us assume that C is not a maximal coalition in
crg Γ′. Thus there is a successful coalition C′ s.t. C′ ⊃
C. A coalition that contains az will be satisfied only if it
contains at least k other agents that are satisfied. Therefore,
if we remove az we will have a successful coalition of size k.
Consequently, we know we have a successful coalition of size
k in crg Γ.

Theorem 3.7. Checking whether C is a Maximal Suc-
cessful Coalition (maxsc) is W[1]–hard when parameteriz-
ing by |C|.

Proof. We prove this by reduction from the problem
maximal coalition (maxc) (we have already proven that
this problem is W[1]–hard in Theorem 3.6).

Let Γ be a crg and C ⊂ Ag be a coalition. We construct
Γ′ such that:

G′ = G ∪ {gz}
∀i ∈ C : G′

i = Gi ∪ {gz}
∀r ∈ R : req(gz, r) = 0

The construction of the crg Γ′ can be completed in O(|Γ|)
time.

The parameter of the maximal successful coalition
problem (k′) is a function of the parameter of the maximal
coalition problem, and depends only on it (k′ = k).

We now prove that C is a maximal coalition in the crg Γ
iff C is a maximal successful coalition in the crg Γ′:
(⇒) Let us assume that C is a maximal coalition in crg Γ.
Thus C is a maximal coalition in crg Γ′ as well. In addition,
we know that all the agents that belong to C are satisfied
in Γ′. Therefore, C is a maximal successful coalition in crg
Γ′.
(⇐) Let us assume that C is a maximal successful coalition
in crg Γ′. Consequently, C must be a maximal coalition in
crg Γ, since our structure did not prevent other coalitions
from being formed.

3.3 The |R| Parameter
In many applications and domains the number of different

resources is known to be very small. Scheduling missions
[11] and virtual organizations [2] are well studied examples
to such domains.

Investigating the problems using the parameterized com-
plexity paradigm shows that limiting the |R| parameter does
not relax the problem to an intractable level. For an in-
tuition observe that even with a small number of different
resources we remain with a hard problem of finding a ”Hit-
ting Set” of goals for the coalitions.

The formal proofs, regarding the |R| parameter, for suc-
cessful coalition, maximal coalition and maximal suc-
cessful coalition problems are established as follows.

Theorem 3.8. Checking whether C is a Successful Coali-
tion ( sc) is para −NP–hard when parameterizing by |R|.

Proof. The proof is by reduction from the hitting set
problem. We show that even for the single slice of |R| = 1
the problem remains NP-hard. By [7] (page 38) this suffices
to prove para −NP–hardness.

Let U = {e1, . . . , em} a finite set of elements, T a collec-
tion of sets T = {S1, . . . , Sn} s.t. Si ⊆ U ∀i ∈ {1, . . . , n},
and k an integer. We construct a set of goals G = {g1, . . . , gm}
such that each goal represents a single element, and a set of
agents Ag = {ai, . . . , an} such that each agent represents a
single set (Si).

For each agent ai, we set Gi to be the set of goals corre-
sponding to the elements in set Si.

∀gj ∈ G req(gj , r) = 1

en(a1, r) = k

∀i 	= 1 en(ai, r) = 0

R = {r} , C = {Ag}
The construction of the crg Γ can be completed in O(|U |+

|T |) time.
The |R| parameter is bounded to |R| = 1.
We now prove that C is a successful coalition in the crg

Γ iff there is a Hitting Set of maximal size of k:
(⇒) Let us assume that C is successful. Namely, each agent
has at least one of its goals satisfied. Therefore, choosing
the corresponding elements will results with a hitting set.
In addition, since the coalition has only k endowment of the
resource, and each goal demands one resource, the hitting
set is of maximal size of k.
(⇐) Let us assume we have a hitting set H of maximal size k.
Therefore, choosing the corresponding goals in Γ will results
with a set of goals that satisfied the coalition. In addition,
since the hitting set is of size k (or smaller), it is obvious
that the coalition has enough resources to accomplish the
goals.

Theorem 3.9. Checking whether C is a Maximal Coali-
tion (maxc) is Para − NP–hard when parameterizing by
|R|.

Proof. The proof is by reduction from grand coali-
tion successful (gcs). It is easy to see that the gcs is
para−NP–hard since the proof used for successful coali-
tion (Theorem 3.8) stand for the Grand coalition as well.

Given a crg Γ, we construct a crg Γ′ and a coalition C
such that: Γ′ = Γ and C = Ag \ {an}.

The construction of the crg Γ′ and coalition C can be
completed in O(|Γ|) time.

The |R| parameter of the maximal coalition problem is
the same as the |R| parameter in the gcs problem.

We now prove that the grand coalition is successful in crg
Γ iff C is not a maximal coalition in the crg Γ′:
(⇒) Let us assume that the grand coalition is successful in
Γ. Namely, {Ag} is a successful coalition and C ⊂ Ag, i.e.,
C is not a maximal coalition.
(⇐) Let us assume that C is not a maximal coalition. Then,
since the only strict superset of C is Ag, this indicates that
the {Ag} coalition is successful, hence the grand coalition is
successful.

Theorem 3.10. Checking whether C is a Maximal Suc-
cessful Coalition (maxsc) is Para−NP–hard when param-
eterizing by |R|.
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Proof. The proof is by reduction from maximal coali-
tion (maxc) (We already proved it to be para −NP–hard
is Theorem 3.9).

Notice that the reduction used to prove that the maximal
successful coalition is W[1]-hard in |C| can be used here
as well since the |R| parameter is untouched in this reduc-
tion.

3.4 The |Ag| and |R| Parameters
The |Ag| and |R| parameters are the total number of

agents and the number of different types of resources in the
environment. There are many applications where the num-
ber of agents available in the environment is small, and the
number of different resources (skills) they have is bounded
as well. An example for an application with a bounded num-
ber of agents and different resources can be find in Conitzer
and Sandholm [2]. Conitzer and Sandholm describe coalition
formation between medical companies (agents), each holds
some medical patents (resources), and try to create useful
drugs (goals). Other examples are scheduling missions, vir-
tual organizations and ”just-in-time” incorporation (agents
grouping to handle workflows), to name just a few.

The parameterized complexity results show that in most
considered coalition formation problems, limiting the |Ag|
and |R| parameters relaxes the problems, thus they can
be solved in a pseudo polynomial time. These results are
very interesting since bounding only the |R| parameter does
not relax the problems. Bounding the |Ag| parameter de-
creases the number of possible coalitions. However, deter-
mining whether a coalition is successful demands choosing
the appropriate goals and dividing the resources correctly
among them, which seems much like the knapsack problem.
Bounding the number of different resources (|R|) enables the
algorithms to reduce the number of goals considered and to
complete the resource division in pseudo polynomial time.

The formal proofs, regarding the |Ag| and |R| parameters,
for successful coalition, maximal coalition and the
maximal successful coalition problems are established
as follows.

The formal proof regarding the successful coalition
problem can be found in Theorem 3.1. Notice, that in this
problem the actual parameter is |C|+ |R|, which means that
even if the number of total agents is not bounded but we
work with small coalitions (and the number of different re-
sources is bounded) this problem can be solved in pseudo
polynomial time.

Theorem 3.11. Checking whether C is a Maximal Coali-
tion is FPT when parameterizing by |Ag| + |R|.

Proof. The algorithm of Figure 4 solves the problem in
O(|Γ| · 22|Ag|+|R|) steps.

1. For each C′ ⊆ Ag:

(a) If C 	⊂ C′ go to 1.

(b) If C′ is successful return ”False”.

2. return ”True”.

Figure 4: Algorithm for determining whether the
coalition is maximal.

The algorithm’s main loop is of a complexity of O(2|Ag|).
Inside the loop the algorithm checks if the subset of agents

C′ is a superset of coalition C (a complexity of O(|C′|)),
and checks whether subset C′ is a successful coalition (i.e.

can be done in a complexity O(|Γ| · 2|C′|+|R|) according to

Theorem 3.1). Hence, the algorithm’s complexity is O(2|Ag| ·
2|C′|+|R| · |Γ|) < O(|Γ| · 22|Ag|+|R|).

Theorem 3.12. Checking whether C is a Maximal Suc-
cessful Coalition is FPT when parameterizing by |Ag| + |R|.

Proof. The algorithm of Figure 5 solves the problem in
O(|Γ| · 22|Ag|+|R|) steps.

1. If C is not a Successful Coalition return ”False”.

2. Else, if C is not a Maximal Coalition return ”False”.

3. return ”True”.

Figure 5: Algorithm for determining whether the
coalition is successful and maximal.

The algorithm’s first step can be done in O(Γ · 2|C|+|R|)
time (since the successful coalition problem is FPT in
|C|+ |R|). The algorithm’s second step can be completed in

O(Γ · 22|Ag|+|R|) time (since the maximal coalition prob-
lem is FPT in |Ag|+|R|). Hence, the algorithm’s complexity

is O(22|AG|+|R| · |Γ|).

4. CONCLUSIONS AND FUTURE WORK
In this paper we re-examined several coalition formation

problems defined in the crg model using a parameterized
complexity approach. Our analysis showed that even though
all these problems have been previously proven to be hard,
bounding some parts of the input can result in important
tractable cases. Thus, many coalition formations problems
may be easy in practice in many real-world applications.
On the other hand, we have shown that in some other cases,
bounding a parameter does not ease the problem. Through-
out, parameterized complexity theory provided us with the
framework, terminology and tools to establish the results.

All the problems we examined were found to be FPT in
the |G| parameter. In particular, if in a given domain the
number of goals is small - a rather common situation - al-
most all problems regarding coalition formation, modeled by
crg, can be solved with in pseudo-polynomial time. Thus,
limiting the number of goals dramatically reduces the time
complexity of what seems to be a hard problem in general.

Similarly, in almost all problems we considered we found
that the problems are FPT in |Ag|+ |R|. Thus, if the num-
ber of agents in the domain and the number of different re-
sources are both small, almost all the coalition formation
problems modeled by crg can be solved with a pseudo-
polynomial algorithm (at least those we considered). In-
terestingly, this does not hold for the |R| parameter alone,
for which we proved that bounding this parameter does not
relax the problems at all.

Similarly, it seems that limiting |C| - size of the coalition
- does not have a dramatic affect on the time complexity of
the problems. Namely, limiting the size of the coalitions in a
domain with a large number of goals and a large number of
agents (or different resources) will not relax the intractabil-
ity of the problems. Thus, the hardness of the problems
does not seem to depend on the size of the coalition, nor
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on the number of different resources. The practical meaning
is that in large domains, even if we work with a very small
coalition (such as in teamwork) or with a small number of
resources, we may still not be able to compute the answer to
many coalition formation problems in a reasonable pseudo
polynomial time.

There are many avenues for future work. First and fore-
most, the analysis can and should be extended to other coali-
tion formation problems. Here, we considered few of the key
ones, but there are many other ones. In particular, exam-
ining other problem types relating to coalition formation,
such as ”Efficient Coalition Formation” problems will be in-
teresting. Efficient coalition formation problems focus not
only on whether the agent is satisfied by the coalition, but
also check the profile of resources the agent is asked to in-
vestigate and search for the successful coalition that asks
for as little resources as possible. These problems invokes
many computational problems, most of which where found
to be hard [12, 16, 17]. However, as stated earlier, many
of the input parameters tend to be small (such as the num-
ber of goals the agents must accomplish). Analyzing these
problems using the parameterized complexity paradigm will
reveal whether an efficient formation of coalitions can be
made with a reasonable (pseudo-polynomial) complexity.

This research is based on the crg model for coalition
structures. As the research continues, other coalition for-
mation models should be examined as well (such as the qcg
[16]). Each model has a different input structure, and there-
fore raises different problems and requires different methods.
It would be interesting to examine whether the parameter-
ized complexity paradigm increases or decreases the similar-
ity between the models.

In this work we discussed several key parameterizing op-
tions, but other parameterizations may also be of interest.
In particular, the complexity of the problems when param-
eterizing by |Ag| is an open question. Also, the complexity
of successful coalition when parameterized by |C| is an
open question.

To the best of our knowledge, this is the first research
that uses the parameterized complexity paradigm to analyze
problems raised in coalitions of agents in multi–agent sys-
tems. Therefore, it would be wise to broaden this analysis
to other coalition’s problems (other than formation prob-
lems). Interesting problems could include: decision–making
in coalitions, elections in coalitions and evaluating coali-
tions/coalitions decisions.
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